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On the new invariance algebras of relativistic equations 
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USSR 

Received 7 August 1978 

Abstract. We show that the massless Dirac equation and Maxwell equations are invariant 
under a 23-dimensional Lie algebra, which is isomorphic to the Lie algebra of the group 
C4 0 U(2) 0 U(2). It is also demonstrated that any Poincart-invariant equation for a 
particle of zero mass and of discrete spin provide a unitary representation of the conformal 
group and that the conformal group generators may be expressed via the generators of the 
Poincare group. 

1. Introduction 

Bateman (1909) and Cunningham (1909) discovered that Maxwell’s equations for a 
free electromagnetic field were invariant under conformal transformations. Nearly fifty 
years ago the conformal invariance of an arbitrary relativistic equation for a massless 
particle with discrete spin was established by Dirac (1936) for a spin-; particle and by 
McLennan (1956) for a particle of any spin. 

Until now the question of whether the conformal group is the maximally extensive 
symmetry group for the equations of motion for massless particles remained unsettled. 
A positive answer to this question has been obtained only in the frame of the classical 
Sofus-Lie approach (Ovsjannicov 1978), but as has been found recently, Lie methods 
do not permit the possibility to obtain all possible symmetry groups of differential 
equations. 

The restriction of the Lie method is that it applies only to those symmetry groups 
whose generators belong to the class of differential operators of first order. Using the 
non-Lie approach, in which the group generators may be differential operators of any 
order and even integro-diff erential operators, the new invariance groups of relativistic 
wave equations have been found (Fushchich 1970,1971,1973,1974). It was demon- 
strated that any PoincarC-invariant equation for a free particle of spin S 3 $ possessed 
additional invariance under the group SU(2) 0 SU(2) (Fushchich 1970, 1971); that the 
Kemmer-Duffin-Petiau equation was invariant under the group SU(3)0SU(3), and 
that the Rarita-Schwinger equation was invariant under the group 0(6)00(6)  was 
deminstrated by Nikitin er a1 (1976) and by Fushchich and Nikitin (1977a). The 
non-Lie approach was also used successfully to obtain the symmetry groups of the Dirac 
and Kemmer-Duffin-Petiau equations describing the particles in an external elec- 
tromagnetic field (Fushchich and Nikitin 1978). Other examples of symmetries which 
cannot be obtained in the classical Lie approach are the symmetry groups of the 
non-relativistic oscillator (Levi-Leblond 1971) and of the hydrogen atom (Fock 1935). 
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748 V I  Fushchich and A G Nikitin 

In the present paper, we have found the new symmetry groups of the massless Dirac 
equation and of Maxwell’s equations using a non-Lie approach. These groups are 
generated not by the transformations of coordinates, but by the transformations of the 
Dirac wavefunction 9 and the vectors of the electric field E and the magnetic field H of 
the type 

q + q’ = f(9, aq/ax, ,  a2q\IIax,axb, . . . ) 
E + E’ = g(E, H, aElax,, aH/ax,, a2E/ax,axb, a2H/ax,axb, . . . 
H -+ H’ = h(E, H, aE/ax,, aHlax,, a2E/ax,axb, d2Hlax,axb, . , . 

(1.1) 

(1.2) 

where the functions f and g, h may depend on any order derivatives of Q and E, H 
respectively. 

It is demonstrated that Maxwell’s equations are invariant under the group 
U(2)0U(2) ;  the explicit forms of the functions g and h in (1.2), which generate the 
transformations of such a group, are found. It is also shown that the Dirac equation 
(with m = 0) and Maxwell’s equations are invariant under a 23-parametrical Lie group, 
which is isomorphic to the group C40U(2)OU(2) .  The results obtained admit 
immediate generalisation to the relativistic wave equations for massless particles of any 
spin. The conformal group generators which leave the Weyl equation and the massless 
Dirac equation invariant are expressed in a form which is transparently Hermitian. It is 
demonstrated that any (generally speaking, reducible) representation of a Poincare 
group, which corresponds to zero mass and discrete spin, may be extended to the 
conformal group representation. The explicit expression for the generators of the 
conformal group C4 via the generators of the PoincarC group P(1, 3) has been found. 
We therefore give a constructive proof of the statement that any relativistic equation for 
a discrete spin and zero-mass particle provides the unitary representation of the 
conformal group (for Maxwell and Bargman-Wigner equations this has been demon- 
strated by Gross (1964)). 

2. The Hermitian representation of the conformal group generators for any spin 

The conformal invariance properties of any relativistic equation of motion for a particle 
of zero mass and of discrete spin may be formulated by the following statement. 

Theorem 1. Any PoincarC-invariant equation for a zero-mass and discrete spin 
particle is invariant under the conformal algebra C4t, basis elements of which are given 
by the operators P,, J,, and 

where P, and J,, are the basis elements of algebra P(1, 3), 

[A ,  B]+ = AB +BA P2 = P: +P: + P i  II = iEabJa$cPil 

and D, K, are the operators which extend the algebra P(1, 3) to the algebra C4. 

t We use the same notation for the groups and for the corresponding Lie algebras. 
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Proof. Inasmuch as the operators P, and J,, by definition satisfy the algebra 

[ J w m  pA]-=i(guApw-g+Apu) 
(2.2) 

[P,, P Y I -  = 0 

[Jpv, JA, 1- = i(g ~AJ ,U +- gwdu* - g,AJw - gud,A ), 

the theorem proof is reduced to the verification of the correctness of the following 
commutation relations: 

which determine together with (2.2) the algebra C4 (see, e.g., Mack and Salam 1969). It 
is not difficult to carry out such a verification, bearing in mind that for the set of solutions 
of any relativistic equation for a particle of zero mass and of discrete spin the following 
relations are satisfied: 

P,P” = 0 w,w’=o W, = AP, (2.4) 

where W, is the Lubansky-Pauli vector 

w , = 1  2E,vpoJ,b-pu. 

So the formulae (2.1) have determined the explicit form of the conformal group 
generators via the given generators P,, J,, of the group P( 1, 3). The theorem is proved. 

We note that the generators K, and D are written in a transparently Hermitian 
form, and hence they generate the unitary representation of the conformal group. The 
constructive character of theorem 1 will be demonstrated in the next section. 

3. Manifestly Hermitian representation of the conformal group generators for Dirac 
and Weyl equations 

The results given above may be used to find the explicit form of the generators of the 
conformal group representation, which is realised on the set of solutions of any 
relativistic equation for a massless particle. In this section we shall demonstrate it by the 
examples of the massless Dirac equation and of the Weyl equation. 

The Dirac equation for a massless particle of spin f may be written in the form 

L 9 = 0  L = i(d/Jt) - YoYaPa pa = -ia/axa (3.1) 

where y, are the four-row Dirac matrices. 

definition invariant under G if the operators QA satisfy the relations 
{QA} denotes the set of the generators of some Lie group G. Equation (3.1) is by 

[L, OA]- = F , L  (3.2) 

where FA are some operators which are defined on the set of the solutions of equation 
(3.1). 
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A well known example of such operators is the set of Poincare group generators 

(3.3) 

According to theorem 1, the representation (3.3) may be extended to the represen- 
tation of Lie algebra of the conformal group. Substituting (3.3) into (2.4), one obtains 
the operators 

(3.4) 

which satisfy the invariance condition (3.2) (where Fa = 0) and the commutation 
relations (2.5). The operators (3.3) and (3.4) are transparently Hermitian under the 
usual scalar product 

and therefore generate the unitary representation of the conformal group. 

(3.4) may also be written in the usual form (see e.g. Mack and Salam 1969) 
Let us note that on the set of solutions of equation (3.1) the generators (3.3) and 

which is not, however, manifestly Hermitian. 
The Weyl equation for the neutrino, 

iadlat = F a p a d ,  (3.7) 

where U ,  are Pauli matrices, is equivalent to the equation (3.1) with the Poincart- 
invariant subsidiary condition 

(1 + i y 4 ) 9  = 0 Y 4 =  YOYIY2Y3. (3.8) 

The exact form of the Hermitian generators of the conformal group which are provided 
by equation (3.7) may be obtained from (3.3) and (3.4) by the substitution 

PO + U a P a  S a b  -* i i ( u a a b  - U b U a  ). (3.9) 

Finally, if P, and J,,, are the generators of the irreducible representation of the 
PoincarC group in Lomont-Moses (1962) form, then the formulae (2.1) give the 
conformal group generators in the form of Bose and Parker (1969). 
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4. The additional symmetry of the Dirac equation with mass m = 0 

Some years ago the new invariance algebra of equation (3.1) was found (Fushchich 
1970, 1971); this is different from the algebra of the conformal group generators. The 
basis elements of this algebra have the form 

x = s  -1. 
a b  a b  21(Yacb - Ybba) (1  + Yap^,) 

4a - 2Y4Ya +h4ba(1 + Ybfib) 
-1 (4.1) 

where 
a, b = 1 ,2 ,3 .  2 1/2 ba = pap-' e = (e: +e: +e31 

The operators (4.1) realise the representation D($, O)OD(O, $) of the Lie algebra of 
the group O(4) - SU(2)OSU(2), but do not form the closed algebra together with (3.3), 
(3.4) or (3.8). Below we will obtain the 23-dimensional invariance algebra of equation 
(3.11, which includes the Lie algebras of the groups C4 and U(2)0U(2) .  

Theorem 2. The Dirac equation (3.1) is invariant under the 23-dimensional Lie 
algebra, which is isomorphic to the algebraof generators of the group C40U(2)OU(2) .  
The basis elements of this algebra have the form 

Pa = p a  = -ia/axa Po = po = ia/at 

Jab = XaPb - &pa 

~ o a  = xopa - xapo - - (1 - 1Y4)YaYbbb + e o a  

D=x,p,+i  (4.2) 

s a b  

iH , 

2e 

-2 K,  = ( - X J ' + J a b S a b p  +p-')p, +2[X, + ( ~ - S , O ) ( ~ - Y O ) S , , ~ ~ ] D  

e, = H/p  -1 
Oc - 2Y4(@a + YOSabbb) 

i a b  = $cabc  (HIP)eoc e s =  1 

Proof. Let us transform equation (3.1) and the generators (4.2) to a representation 
in which the theorem statements may easily be verified immediately. Using for this 
purpose the operator 

a, b, c = 1 ,2 ,3 .  

v = v-' = '[ 2 l + Y O f ( l - Y O ) ~ a b c S a b ~ c l  (4.3) 
one obtains 

(4.4) 
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It is not difficult to be convinced that the operators (4.4) and (4.5) satisfy the invariance 
condition (3.2) : 

[L’, PL]- = [L’, 

[L’, K A  3- = 2i[x0 + (xapa - i)iy4p-’]~’ 

[L’, Kh3- = 2i(x, +iiax0y4)L’ 

= [L’, $3 = [L’, eh] = 0 

[L’, D‘]- = iL‘ [L‘, JAaI- = Y4haL’ 

and the commutation relations for QX c {P:, J I v ,  K : ,  D’, EL} 
[P:, P:]- = 0 [P:, J L I -  =i(gWAP:-guAPL) 

[JLY, J; , ] -=i(g,d:~ +gvAJ:, -gp,iJ;, -gvdLA) 

[PL, 0’3- = -iP: 

[P:, K : ] -  = 2i(~:,, -5:u-gpyDI) 

[e:&,, P i ] -  = [e:&,, 0’1- = [e:&,, K ; ] -  =[eh. a,]- = 0.  

[K:, 0’3- = iK: ; [JLY. D’]- = 0 

[ J I Y ,  e:,]- = [ e : u ,  e:,]- =i(gwu e:A+guAe:,-g,AeI,-g.,e:A) 

The algebra (4.6) is isomorphic to the algebra of generators of the group 
C40U(2)OU(2) .  The theorem is therefore proved. 

We note that the subsidiary condition (3.8) is not invariant under the trans- 
formations which are generated by the operators epV. Therefore the Weyl equation 
(3.7) is not invariant relative to the whole algebra (4.2), but is invariant with respect to 
its subalgebra C4. 

It should be emphasised that the generators (4.2) belong to the class of nonlocal 
integro-differential operators, and therefore one cannot obtain them in the classical Lie 
approach. 

5. The symmetry of Maxwell’s equations 

The Maxwell equations for a free electromagnetic field have the form 

p x E = iaH/at 

p . E = O  p . H = O  

p x H = -i(aE/af) 
(5.1) 

where E and H are the vectors of the electric and magnetic field strengths. 
Equations (5.1) are invariant under the conformal group. It is well known that these 

equations are also invariant under the transformations (Heaviside 1893, Larmor 1928) 

Ea + Ha Ha + -Ea (5 .2 )  
and under the more general ones (Rainich 1925) 

Ea+Ea cos B+H, sin B 

Ha + H a  cos B -Ea sin 8. 
(5.3) 

We now demonstrate that the summetry of the Maxwell equations is more exten- 
sive, namely that the equations (5.1) are invariant under the set of transformations 
which realise the representation of the group U(2)0U(2)  and include (5.3) as a 
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one-parameter subgroup. The theorem about such an invariance of the Maxwell 
equations in the class of transformations of kind ( 1 . 1 )  and (1 .2 )  had been formulated by 
one of us (Fushchich 1974) without showing the exact form of the functions g and h. 
Below we give the explicit transformation laws for E, and Ha. 

Theorem 3. The Maxwell equations (5.1) are invariant under the transformations 

Ha + HT = exp ($)Ha 

E, + E r  = exp(iq5)Ea 
( 5 . 4 d )  

where 

D a d  = [ (pb: +pb.p’b -p26p:)aad +PlPZP3(Pbacd+Pcabd -pap”d)lL-l 
2 2  4 2 2  4 4 1 / 2  L = : J % ( P : - P 2 )  P 3 + ( P h 3 )  P2+(P;-P:)P11 

and where (a, b, c )  is a cyclic permutation of ( 1 ,  2 ,3 ) ;  
2 1/2  e= (e :+e :+e3)  . 2 1 / 2  A = ( A :  + A :  +A3) 

e,, A,, 77 and q5 are real parameters. The transformations (5 .4)  realise the represen- 
tation of the group U(2)0U(2) .  

Proof. One can be convinced by the direct verification that 
Eh, Hh, E:, H:, E r ,  Hr, ET,  HT satisfy equation ( 5 . 1 )  as well as the non-trans- 
formed vectors E and H, but a more elegant and constructive way, which shows the 
method of obtaining the group (5 .4 )  is to transform the equations to a form for which the 
theorem statements become obvious. 

Let us write equations ( 5 . 1 )  in the matrix form (Fushchich and Nikitin 1977 a,b 
Nikitin and Fushchich 1978) 

where 9 is an eight-component wavefunction 

and a,, S4, are matrices of the form 

a,  = 2u2ra 

(5.7)  
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0 0  O i  0 O i O  
0 0 - i o  0 O O i  

- i o  0 0  0 - i o 0  

0 0 0 i '  0 0 0 0  
0 O O i  

0 0 0  0 - i o 0  

6 and 1 are four-row square zero and unit matrices. The matrices S14a and 

g a b  = t ( g 4 c  + 2 ; c ) c a b c  

realise the representation D($,$)  of the algebra O(4). Writing equations (5.5) by 
components, one obtains the usual form for the Maxwell equation (5.1) and the 
conditions for q51 and 4 2 :  

41 = c1 4 2  = c2 

where C1 and Cz are constants which may be equated to zero without loss of 
generalityi. 

Using the unitary operator 

€j ), S a i a  U = exp (-i 7 tan-' 
P P1 + P z + P 3  

where 

one reduces the equations (5.5) to the symmetrical form 

t a l  
a t  J 3  
1 

J3 

L;@ = 0 ;  

L;@ = 0 ;  

Li = ULIU =i---(a1+a2+a3)p; 

(5 .9 )  
@ = U 9 .  L;= U L 2 U t = - ( ( S 4 1  + s 4 2 + s 4 3 ) ;  

The operator (5 .8 )  also transforms the helicityoperator S,  = S,p,p-' to the symmetrical 
matrix form: 

US,U' = (s1 + SZ + S3)/  J3. 
The invariance condition (3.2) for the equations (5.9) takes the form 

(5.10) 

t The analogous 'Dirac-like' formulation of the Maxwell equations (but using a four-component wavefunc- 
tion and subsidiary condition different from (5.56) has been proposed previously by Lomont (1958) and 
Moses (1958). 
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The conditions (5.10) are obviously satisfied by any operator which commutes with the 
matrices 

A = ( ( Y ~ + ( Y ~ + ( Y ~ ) / J T  and B = ( S ~ ~ + S ~ Z + S ~ ~ ) / J T .  (5.11) 

We choose the complete set of such operators in the form 

Q;z = (SI + Sz + S 3 ) / 6  Q;3 = iQ‘12Q;l 

(5.12) 

Of course this is not the only possible basis set of the operators commuting with (5.11). 
However, we prefer the operators (5.12) because they are invariant under the permu- 
tation 

s a  s b  Pa +Pb a, b = 1 ,2 ,3 .  

The operators (5.12) satisfy the invariance condition (5.10) (with f f  = f ;  =/A = 
fi = 0) and the commutation relations 

[QL Q L n ] -  = 2 i ( 6 k m Q ; n  +S lnQ;m - 6 k m Q ; m  - 6 l m Q i n )  

[Qk, Q L -  = [Qk, Qhl- = [QL Qkl- = 0. 

(5.13) 

These operators also satisfy the conditions 

(QLl)’@ = (Q&)’@ = (Qk)’@ = @, (5.14) 

i.e. they realise the representation of the Lie algebra of the group U(2)0U(2)  and Ql, 
form the representation D(0, $)@D($, 0) of the group SU(2)0SU(2).  

It follows from the above that equations (5.9) are invariant under the arbitrary 
transformation from the group U(2)0U(2) :  

@ + @ I =  exp ($ieabcQ;b8,-)@= (cos 8 +$i8-1EabcQLb8c)@ 

@ + W = exp(iQk,Aa)@ = (cos A + iS4,Aa sin A / A ) @  

@ + @”’ = exp(iQ;q5)@ = (cos 4 + iQk sin r$)@ 

@ 

(5.15) 

@ ! I l l  - - exp(iQ6q)Q = exp(iq)@.. 

Returning with the help of the operator ( 5 . 8 )  to the starting 9 function one obtains from 
(5.14) the following transformation laws: 

i 
( A  

* + yrll = cos A + - Q 4 a A a  sin A 

*+V- - (cos q + iQs sin q)Y 
* +, *Ir”” - - exp(i4)q 

(5.15) 
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where 

Substituting (5.6) and (5.16) into (5.15), we obtain the formulae (5.4). The theorem is 
proved. 

So we have found a new eight-parameter symmetry group of the Maxwell equations 
which is given by the transformations (5.4). The main property of such transformations 
is that they are carried out by the nonlocal (integro-differential) operators. 

It is necessary to emphasise that the transformations (5.4) have nothing to do with 
the Lorentz ones, inasmuch as they realise the unitary finite-dimensional represen- 
tation of the compact group U(2)0U(2) .  If A I  = A 2  = 0, the formulae (5.46) give the 
Heaviside-Larmor-Rainich transformation (5.3). 

The transformations (5.4) are unitary under the usual scalar product (3.5). Substi- 
tuting (5.6) into (3 .9 ,  we discover that the transformations (5.4) do not change the 
quantity 

8 = d3x (E2  + H 2 ) ,  J 
which is associated with the full energy of an electromagnetic field. 

A,, 77 and q5 in (5.4) are the complex ones, the transformations 
(5.4) realise the representation of the group GL(2)0GL(2) .  Such transformations also 
leave the equations (5.1) invariant, but are, of course non-unitary. 

Using therorem 1 ,  we can show that equations (5.5) provide the Hermitian 
representation of the Lie algebra of the conformal group. The basis elements of this 
algebra have the form 

If the parameters 

where 

(5.17) 

But the generators (5.17) together with (5.16) do not form the closed algebra. The 
symmetry of equations (5.5) under the 23-dimensional Lie algebra, which includes the 
subalgebras C4 and U(2)0U(2) ,  is established in the following theorem. 
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Theorem 4. Equations (5.5) are invariant under the 23-dimensional Lie algebra, 
basis elements of which are the operators (5.16) and the generators 

(5.18) 

where 

The proof may be carried out in full analogy with the proof of theorem 2 (but using 
the operator (5.8) instead of (3.3)). The operators (5.18) satisfy the algebra (2.2) and 
(2.3) and commute with (5.16). 

It is not difficult to generalise the statements of theorem 4 to the case of ‘Dirac-like’ 
equations for massless particles of any spin (Fushchich and Nikitin 1977b, Nikitin and 
Fushchich 1978). 

We note that the generators (5.16) and (5.17) are nonlocal (integro-differential) 
ones. This means that the invariance algebra of the Maxwell equations which we have 
obtained in principle cannot be obtained in the classical Lie approach, where, as is well 
known, the group generators always belong to the class of differential first-order 
operators. 

References 

Bateman H 1909 Proc. London Math. Soc. 8 223-64 
Bose S K and Parker R 1969 J. Math. Phys. 10 812-13 
Cunningham E 1909 Proc. Lond. Math. Soc. 8 77-97 
Dirac P A M 1936 Ann. Math. 37 429-35 
Fock V A 1935 Z. Phys. 98 1 4 5 4 9  
Fushchich V I 1970 Institute for Theoretical Phisycs, Kiev, preprint E-70-32 
- 1971 Teor. Mat. Fiz. 7 3-12 (transl. Theor. Math. Phys. 7 3-11) 
- 1973 Nuovo Cim. Lett. 6 133-8 
- 1974 Nuovo Cim. Lett. 11 508-12 
Fushchisch V I and Nikitin A G 1977a Nuovo Cim. Lett. 19 347-52 
- 1977b Mathematical Institute, Kiev, preprint 77-3 
- 1978 Nuovo Cim. Lett. 21 541-6 
Gross L 1964 J. Math. Phys. 5 687-95 
Heaviside 0 1893 Electromagnetic Theory (London) 
Larmor 1928 Collected papers London 
Levi-Leblond 1971 Am. J. Phys. 39 502-6 
Lomont I S 1958 Phys. Rev. 111 1710-9 
Lomont I S and Moses H E 1962 J. Math. Phys. 3 405-8 
Mack G and Salam A 1969 Ann. Phys., N Y  53 174-202 
McLennan A 1956 Nuovo Cim. 3 1360-80 
Moses H E 1958 Nuovo Cim. Suppl. 7 1-18 
Nikitin A G and Fushchich V I 1978 Teor. Mat. Fir. 34 319-33 
Nitikin A G, Segeda Yu N and Fushchich V I 1976 Teor. Mar. Fir. 29 82-94 (transl. Theor. Math. Phys. 29 

Ovsjannikov L V 1978 The Group Analyses of Differential Equations (Moscow: Nauka) 
Rainich G Y 1925 Trans. Am.  Math. Soc. 27 106-25 

943-54) 


